home *** CD-ROM | disk | FTP | other *** search
-
- #include "qbsp.h"
-
-
- /*
- ===============================================================
-
- MESH SUBDIVISION
-
- ===============================================================
- */
-
-
- int originalWidths[MAX_EXPANDED_AXIS];
- int originalHeights[MAX_EXPANDED_AXIS];
-
- int neighbors[8][2] = {
- {0,1}, {1,1}, {1,0}, {1,-1}, {0,-1}, {-1,-1}, {-1,0}, {-1,1}
- };
-
- void FreeMesh( mesh_t *m ) {
- free( m->verts );
- free( m );
- }
-
- void PrintMesh( mesh_t *m ) {
- int i, j;
-
- for ( i = 0 ; i < m->height ; i++ ) {
- for ( j = 0 ; j < m->width ; j++ ) {
- printf("(%5.2f %5.2f %5.2f) "
- , m->verts[i*m->width+j].xyz[0]
- , m->verts[i*m->width+j].xyz[1]
- , m->verts[i*m->width+j].xyz[2] );
- }
- printf("\n");
- }
- }
-
-
- /*
- =================
- TransposeMesh
-
- Returns a transposed copy of the mesh, freeing the original
- =================
- */
- mesh_t *TransposeMesh( mesh_t *in ) {
- int w, h;
- mesh_t *out;
-
- out = malloc( sizeof( *out ) );
- out->width = in->height;
- out->height = in->width;
- out->verts = malloc( out->width * out->height * sizeof( drawVert_t ) );
-
- for ( h = 0 ; h < in->height ; h++ ) {
- for ( w = 0 ; w < in->width ; w++ ) {
- out->verts[ w * in->height + h ] = in->verts[ h * in->width + w ];
- }
- }
-
- FreeMesh( in );
-
- return out;
- }
-
- void InvertMesh( mesh_t *in ) {
- int w, h;
- drawVert_t temp;
-
- for ( h = 0 ; h < in->height ; h++ ) {
- for ( w = 0 ; w < in->width / 2 ; w++ ) {
- temp = in->verts[ h * in->width + w ];
- in->verts[ h * in->width + w ] = in->verts[ h * in->width + in->width - 1 - w ];
- in->verts[ h * in->width + in->width - 1 - w ] = temp;
- }
- }
- }
-
- /*
- =================
- MakeMeshNormals
-
- =================
- */
- void MakeMeshNormals( mesh_t in ) {
- int i, j, k, dist;
- vec3_t normal;
- vec3_t sum;
- int count;
- vec3_t base;
- vec3_t delta;
- int x, y;
- drawVert_t *dv;
- vec3_t around[8], temp;
- qboolean good[8];
- qboolean wrapWidth, wrapHeight;
- float len;
-
- wrapWidth = false;
- for ( i = 0 ; i < in.height ; i++ ) {
- VectorSubtract( in.verts[i*in.width].xyz,
- in.verts[i*in.width+in.width-1].xyz, delta );
- len = VectorLength( delta );
- if ( len > 1.0 ) {
- break;
- }
- }
- if ( i == in.height ) {
- wrapWidth = true;
- }
-
- wrapHeight = false;
- for ( i = 0 ; i < in.width ; i++ ) {
- VectorSubtract( in.verts[i].xyz,
- in.verts[i + (in.height-1)*in.width].xyz, delta );
- len = VectorLength( delta );
- if ( len > 1.0 ) {
- break;
- }
- }
- if ( i == in.width) {
- wrapHeight = true;
- }
-
-
- for ( i = 0 ; i < in.width ; i++ ) {
- for ( j = 0 ; j < in.height ; j++ ) {
- count = 0;
- dv = &in.verts[j*in.width+i];
- VectorCopy( dv->xyz, base );
- for ( k = 0 ; k < 8 ; k++ ) {
- VectorClear( around[k] );
- good[k] = false;
-
- for ( dist = 1 ; dist <= 3 ; dist++ ) {
- x = i + neighbors[k][0] * dist;
- y = j + neighbors[k][1] * dist;
- if ( wrapWidth ) {
- if ( x < 0 ) {
- x = in.width - 1 + x;
- } else if ( x >= in.width ) {
- x = 1 + x - in.width;
- }
- }
- if ( wrapHeight ) {
- if ( y < 0 ) {
- y = in.height - 1 + y;
- } else if ( y >= in.height ) {
- y = 1 + y - in.height;
- }
- }
-
- if ( x < 0 || x >= in.width || y < 0 || y >= in.height ) {
- break; // edge of patch
- }
- VectorSubtract( in.verts[y*in.width+x].xyz, base, temp );
- if ( VectorNormalize( temp, temp ) == 0 ) {
- continue; // degenerate edge, get more dist
- } else {
- good[k] = true;
- VectorCopy( temp, around[k] );
- break; // good edge
- }
- }
- }
-
- VectorClear( sum );
- for ( k = 0 ; k < 8 ; k++ ) {
- if ( !good[k] || !good[(k+1)&7] ) {
- continue; // didn't get two points
- }
- CrossProduct( around[(k+1)&7], around[k], normal );
- if ( VectorNormalize( normal, normal ) == 0 ) {
- continue;
- }
- VectorAdd( normal, sum, sum );
- count++;
- }
- if ( count == 0 ) {
- //printf("bad normal\n");
- count = 1;
- }
- VectorNormalize( sum, dv->normal );
- }
- }
- }
-
- /*
- =================
- PutMeshOnCurve
-
- Drops the aproximating points onto the curve
- =================
- */
- void PutMeshOnCurve( mesh_t in ) {
- int i, j, l;
- float prev, next;
-
- // put all the aproximating points on the curve
- for ( i = 0 ; i < in.width ; i++ ) {
- for ( j = 1 ; j < in.height ; j += 2 ) {
- for ( l = 0 ; l < 3 ; l++ ) {
- prev = ( in.verts[j*in.width+i].xyz[l] + in.verts[(j+1)*in.width+i].xyz[l] ) * 0.5;
- next = ( in.verts[j*in.width+i].xyz[l] + in.verts[(j-1)*in.width+i].xyz[l] ) * 0.5;
- in.verts[j*in.width+i].xyz[l] = ( prev + next ) * 0.5;
- }
- }
- }
-
- for ( j = 0 ; j < in.height ; j++ ) {
- for ( i = 1 ; i < in.width ; i += 2 ) {
- for ( l = 0 ; l < 3 ; l++ ) {
- prev = ( in.verts[j*in.width+i].xyz[l] + in.verts[j*in.width+i+1].xyz[l] ) * 0.5;
- next = ( in.verts[j*in.width+i].xyz[l] + in.verts[j*in.width+i-1].xyz[l] ) * 0.5;
- in.verts[j*in.width+i].xyz[l] = ( prev + next ) * 0.5;
- }
- }
- }
- }
-
-
- /*
- =================
- SubdivideMesh
-
- =================
- */
- mesh_t SubdivideMesh( mesh_t in, float maxError, float minLength ) {
- int i, j, k, l;
- vec_t prev[10], next[10], mid[10], delta[10];
- float len;
- mesh_t out;
- vec_t expand[MAX_EXPANDED_AXIS][MAX_EXPANDED_AXIS][10];
-
- out.width = in.width;
- out.height = in.height;
-
- for ( i = 0 ; i < in.height ; i++ ) {
- memcpy( expand[i], &in.verts[i*in.width], in.width*sizeof(drawVert_t) );
- }
-
- for ( i = 0 ; i < in.height ; i++ ) {
- originalHeights[i] = i;
- }
- for ( i = 0 ; i < in.width ; i++ ) {
- originalWidths[i] = i;
- }
-
- // horizontal subdivisions
- for ( j = 0 ; j + 2 < out.width ; j += 2 ) {
- // check subdivided midpoints against control points
- for ( i = 0 ; i < out.height ; i++ ) {
- for ( l = 0 ; l < 3 ; l++ ) {
- prev[l] = expand[i][j+1][l] - expand[i][j][l];
- next[l] = expand[i][j+2][l] - expand[i][j+1][l];
- mid[l] = (expand[i][j][l] + expand[i][j+1][l] * 2
- + expand[i][j+2][l] ) * 0.25;
- }
-
- // if the span length is too long, force a subdivision
- if ( VectorLength( prev ) > minLength
- || VectorLength( next ) > minLength ) {
- break;
- }
-
- // see if this midpoint is off far enough to subdivide
- VectorSubtract( expand[i][j+1], mid, delta );
- len = VectorLength( delta );
- if ( len > maxError ) {
- break;
- }
- }
-
- if ( out.width + 2 >= MAX_EXPANDED_AXIS ) {
- break; // can't subdivide any more
- }
-
- if ( i == out.height ) {
- continue; // didn't need subdivision
- }
-
- // insert two columns and replace the peak
- out.width += 2;
-
- for ( k = out.width - 1 ; k > j + 3 ; k-- ) {
- originalWidths[k] = originalWidths[k-2];
- }
- originalWidths[j+3] = originalWidths[j+1];
- originalWidths[j+2] = originalWidths[j+1];
- originalWidths[j+1] = originalWidths[j];
-
- for ( i = 0 ; i < out.height ; i++ ) {
- for ( l = 0 ; l < 10 ; l++ ) {
- prev[l] = ( expand[i][j][l] + expand[i][j+1][l] ) * 0.5;
- next[l] = ( expand[i][j+1][l] + expand[i][j+2][l] ) * 0.5;
- mid[l] = ( prev[l] + next[l] ) * 0.5;
- }
-
- for ( k = out.width - 1 ; k > j + 3 ; k-- ) {
- Vec10Copy( expand[i][k-2], expand[i][k] );
- }
- Vec10Copy( prev, expand[i][j + 1] );
- Vec10Copy( mid, expand[i][j + 2] );
- Vec10Copy( next, expand[i][j + 3] );
- }
-
- // back up and recheck this set again, it may need more subdivision
- j -= 2;
-
- }
-
- // vertical subdivisions
- for ( j = 0 ; j + 2 < out.height ; j += 2 ) {
- // check subdivided midpoints against control points
- for ( i = 0 ; i < out.width ; i++ ) {
- for ( l = 0 ; l < 3 ; l++ ) {
- prev[l] = expand[j+1][i][l] - expand[j][i][l];
- next[l] = expand[j+2][i][l] - expand[j+1][i][l];
- mid[l] = (expand[j][i][l] + expand[j+1][i][l] * 2
- + expand[j+2][i][l] ) * 0.25;
- }
-
- // if the span length is too long, force a subdivision
- if ( VectorLength( prev ) > minLength
- || VectorLength( next ) > minLength ) {
- break;
- }
- // see if this midpoint is off far enough to subdivide
- VectorSubtract( expand[j+1][i], mid, delta );
- len = VectorLength( delta );
- if ( len > maxError ) {
- break;
- }
- }
-
- if ( out.height + 2 >= MAX_EXPANDED_AXIS ) {
- break; // can't subdivide any more
- }
-
- if ( i == out.width ) {
- continue; // didn't need subdivision
- }
-
- // insert two columns and replace the peak
- out.height += 2;
-
- for ( k = out.height - 1 ; k > j + 3 ; k-- ) {
- originalHeights[k] = originalHeights[k-2];
- }
- originalHeights[j+3] = originalHeights[j+1];
- originalHeights[j+2] = originalHeights[j+1];
- originalHeights[j+1] = originalHeights[j];
-
- for ( i = 0 ; i < out.width ; i++ ) {
- for ( l = 0 ; l < 10 ; l++ ) {
- prev[l] = ( expand[j][i][l] + expand[j+1][i][l] ) * 0.5;
- next[l] = ( expand[j+1][i][l] + expand[j+2][i][l] ) * 0.5;
- mid[l] = ( prev[l] + next[l] ) * 0.5;
- }
-
- for ( k = out.height - 1 ; k > j + 3 ; k-- ) {
- Vec10Copy( expand[k-2][i], expand[k][i] );
- }
- Vec10Copy( prev, expand[j + 1][i] );
- Vec10Copy( mid, expand[j + 2][i] );
- Vec10Copy( next, expand[j + 3][i] );
- }
-
- // back up and recheck this set again, it may need more subdivision
- j -= 2;
-
- }
-
- // collapse the verts
-
- out.verts = (drawVert_t *)expand[0];
- for ( i = 1 ; i < out.height ; i++ ) {
- memmove( &out.verts[i*out.width], expand[i], out.width * sizeof(drawVert_t) );
- }
-
- return out;
- }
-
-